
References
N.D. Sandham, Q. Li and H.C. Yee, Entropy Splitting for HighOrder Numerical Simulation of Compressible
Turbulence, J. Comp. Phys., 178 (2002), 307322. 
B. Sj¨ogreen, High Order Centered Difference Methods for the Compressible NavierStokes Equations,
J. Comput. Phys., 117, (1995), 6778. 
B. Sj¨ogreen and H. C. Yee, Multiresolution Wavelet Based Adaptive Numerical Dissipation Control
for ShockTurbulence Computation, RIACS Technical Report TR01.01, NASA Ames research center
(Oct 2000); also, J. Scient. Computing, 20, (2004), 211255. 
B. Sj¨ogreen and H.C. Yee, Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows,
I: Basic Theory, AIAA 20034118, Proceedings of the 16th AIAA/CFD Conference, June 2326,
2003, Orlando, Fl. 
B. Sj¨ogreen and H. C. Yee, Grid Convergence of High Order Methods for Multiscale Complex Unsteady
Viscous Compressible Flows, J. Comput. Phys., 185 (2003), 126. 
B. Sj¨ogreen and H. C. Yee, Low Dissipative HighOrder Numerical Simulations of Supersonic Reactive
Flows, Int. J. Numer. Meth. Fluids, 43, (2003), 12211238. 
H.C. Yee, A Class of HighResolution Explicit and Implicit ShockCapturing Methods, VKI Lecture
Series 198904, March 610, 1989, also NASA TM101088, Feb. 1989. 
H.C. Yee, N.D. Sandham, N.D., and M.J. Djomehri, Low Dissipative High Order ShockCapturing
Methods Using CharacteristicBased Filters, J. Comput. Phys., 150 (1999) 199238. 
H.C. Yee, M. Vinokur, M., and M.J. Djomehri, Entropy Splitting and Numerical Dissipation, J. Comput.
Phys., 162 (2000) 3381. 
H.C.Yee and B.Sj¨ogreen, Designing Adaptive Low Dissipative High Order Schemes for LongTime
Integrations for LongTime Integrations, Turbulent Flow Computation, (Eds. D. Drikakis & B.
Geurts), Kluwer Academic Publisher (2002); also RIACS Technical Report TR0128, Dec. 2001. 
H.C.Yee, Building Blocks for Reliable Complex Nonlinear Numerical Simulations, Turbulent Flow
Computation, (Eds. D. Drikakis & B. Geurts), Kluwer Academic Publisher (2002); also RIACS
Technical Report TR0128, Dec. 2001. 
H.C. Yee and B. Sj¨ogreen, Efficient Low Dissipative High Order Scheme for Multiscale MHD Flows,
II: Minimization of Div(B) Numerical Error, RIACS Technical Report TR03.10, July, 2003, NASA
Ames Research Center, to appear, J. Scient. Computing, 2005. 
H.C. Yee and B. Sj¨ogreen, Nonlinear Filtering and Limiting in High Order Methods for Ideal and
NonIdeal MHD, Proceedings of the ICOSAHOM, July 2125, 2004, Brown University, RI; to appear,
J. Scientific Computing, 2006. 
H.C. Yee and B. Sj¨ogreen, Nonlinear Filtering in Compact High Order Schemes, Proceedings of the
19th ICNSP & 7th APPTC Conference, Nara, Japan, July 1115, 2005. 
X. Zhong, Additive Semi Implicit Runge Kutta Methods for Computing High Speed Nonequilibrium
Reactive Flows, Journal of Computational Physics, Vol. 128, pp. 1931, (1996). 
Yoh, J. J. and Zhong, X., New Hybrid RungeKutta Methods for Unsteady Reactive Flow Simulation,
AIAA Journal, vol. 42, no. 8, pp. 15931600, (2004). 
Yoh, J. J. and Zhong, X., New Hybrid RungeKutta Methods for Unsteady Reactive Flow Simulation:
Applications, AIAA Journal, vol. 42, no. 8, pp. 16011611, (2004). 
H. Dong and X. Zhong, HighOrder SemiImplicit Schemes for Unsteady Compressible Flow Simulations,
AIAA Journal, Vol. 40, pp. 869878, May 2002. 
Zhong, X., Highorder finitedifference schemes for numerical simulation of hypersonic boundarylayer
transition J Comp. Physics, 114, 662 (1998).

Zhong, X., and Tatineni, X., Highorder nonuniform grid schemes for numerical simulation of hypersonic
boundarylayer stability and transition, J Comp. Physics, 190, 419 (2003). 
Shukla, R. K. and Zhong, X. , Derivation of highorder compact finite difference schemes for nonuniform
grid using polynomial interpolation, Journal of Computational Physics, vol. 204, pp. 404429,
2005. 
Zhong, X., A New HighOrder Immersed Interface Method for MultiPhase Flow Simulation, AIAA
paper 20061294, 2006. 
M. Tatineni and X. Zhong, Numerical Simulations of TwoPhase Flows in Micro Gas/Liquid Mixing
Sections, AIAA paper 20051392, January 2005. 
M. Tatineni and X. Zhong, Numerical Study of TwoPhase Flows in Microchannels Using the Level
Set Method, AIAA paper 20040929, January 2004. 
Zhong, X., LeadingEdge Receptivity to Free Stream Disturbance Waves for Hypersonic Flow Over a
Parabola, Journal of Fluid Mechanics, 441, pp.315367, 2001. 
Ma, Y., and Zhong, X., Receptivity of a supersonic boundary layer over a flat plate. Part 1: wave
structures and interactions, Journal of Fluid Mechanics, 488, pp. 3178, 2003. 
Ma, Y., and Zhong, X., Receptivity of a supersonic boundary layer over a flat plate. Part 2: receptivity
to freestream sound, Journal of Fluid Mechanics, 488, pp. 79121, 2003.

Ma, Y. and Zhong, X., Receptivity of a supersonic boundary layer over a flat plate. Part 3: effects of
different types of freestream disturbances, J. of Fluid Mechanics, vol. 532, pp. 63109. (2005) 
K. Mahesh, S.K. Lele, and P. Moin, The Response of Anisotropic Turbulence to Rapid Homogeneous
Onedimensional Compression, The Physics of Fluids A, Vol. 6, pp. 10521062, 1994. 
S. Lee, S.K. Lele, and P. Moin, Interaction of Isotropic Turbulence with a ShockWave: effect of shock
strength, Journal of Fluid Mechanics, Vol. 340, pp. 225247, 1997. 
S. Lee, S.K. Lele, and P. Moin, Direct Simulation of ShockTurbulence Interaction, Journal of Fluid
Mechanics, Vol. 251, pp. 533562, 1993: corrigendum in Journal of Fluid Mechanics, Vol. 264, pp.
373374, 1994. 
T. Colonius, S.K. Lele, and P. Moin, Boundary Conditions for Direct Computation of Aerodynamic
Sound Generation, AIAA Journal, Vol. 31, pp. 15741582, 1993. 
S.K. Lele, Shockjump Relations in a Turbulent Flow, The Physics of Fluids A, Vol. 4, pp. 29002905,
1992. 
S.K. Lele, Compact FiniteDifference Schemes With SpectralLike Resolution, Journal of Computational
Physics, Vol. 103, pp. 1642, 1992. 
T.J. Poinsot and S.K. Lele, Boundary Conditions for Direct Simulation of Compressible Viscous Reacting
Flows, Journal of Computational Physics, Vol. 101, pp. 104129, 1992. 
T. Colonius and S. K. Lele, Computational Aeroacoustics: a review of numerical approaches and
progress in nonlinear problems of sound generation,Progress in Aerospace Sciences, Vol. 40 (6), pp.
345416, 2004. 
M. Wang, J. B. Freund and S. K. Lele, Computational Prediction of Flow Generated Sound, Annual
Review of Fluid Mechanics, Vol. 38, pp. 483512, 2006. 
P. Moin and J. Kim, Tackling Turbulence with Supercomputers, Scientific American, Vol. 276, No. 1,
6268, January 1997. 
P. Moin and K. Mahesh, Direct Numerical Simulation: A Tool in Turbulence Research, Annual Rev.
of Fluid Mech., Vol. 30, 539578 (1998). 
A. Honein and P. Moin, Higher entropy conservation and numerical stability of compressible turbulence
simulations, Journal of Comput. Physics vol. 201, 2004 
S. K. Lele, Compressibility effects on turbulence, Annual Rev. Fluid Mech., Vol. 26, pp. 211254,
1994. 
M. Germano, U. Piomelli, P. Moin, W. H. Cabot, A dynamic subgridscale eddy viscosity model, in
Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer
Program, p 517, Center for Turbulence Research, Stanford University, 1990. 
Fiorina, B. and Lele, S.K., An artificial nonlinear diffusivity method for supersonic reacting flows with
shocks, Submitted to J. Comput. Phys. ,(2005) 
S. K. Lele. Compact finite difference schemes with spectrallike resolution. J. Comput. Phys., 103:16–
42, 1992. 
Cook, A. W., Cabot, W. H., Welcome, M. L., Williams, P. L., Miller, B. J., de Supinski, B. R. and
Yates, R. K., TeraScalable Algorithms for VariableDensity Elliptic Hydrodynamics with Spectral
Accuracy, Proceedings of the ACM/IEEE SC 2005 Conference, November 1218, 2005, also as LLNL
Report No. UCRLCONF211384. 
Cook, A. W., Cabot, W., Miller, P. L., The Mixing Transition in RayleighTaylor Instability, J. Fluid
Mech., Vol. 511, 2004, p. 333362. 
Cook, A. W. and Cabot, W. H.,A HighWavenumber Viscosity for HighResolution Numerical Methods,
J. Comput. Phys., Vol. 195, 2004, p. 594601. 
Cook, A. W. and Cabot, W. H.,Hyperviscosity for ShockTurbulence Interactions, J. Comput. Phys.,
Vol. 203, 2005, p. 379385. 
Fiorina, B. and Lele, S. K., An artificial nonlinear diffusivity method for supersonic reacting flows
with shocks, submitted to J. Comput. Phys., 2005. 
Mittal, R. and Moin, P.,Stability of upwindbiased finite difference schemes for largeeddy simulation
of turbulent flows, AIAA J., Vol. 35, 1997, p. 14151417. 
S. Nagarajan, S.K. Lele, and J.H. Ferziger, A robust highorder compact method for large eddy simulation,
Journal of Computational Physics, Vol. 191, pp. 392419, 2003. 
G. Constantinescu and S.K. Lele, A highly accurate technique for the treatment of flow equations at
the polar axis in cylindrical coordinates using series expansions, Vol. 183, pp. 165186, Journal of
Computational Physics, 2002. 
J.B. Freund, S.K. Lele, and P. Moin, Compressibility Effects in Turbulent Annular Mixing Layer, Part
1. Turbulence and Growth Rate, Journal of Fluid Mechanics, Vol. 421, pp. 229267, 2000. 
J.B. Freund, P. Moin, and S.K. Lele, Compressibility Effects in Turbulent Annular Mixing Layer, Part
2. Mixing of a Passive Scalar, Journal of Fluid Mechanics, Vol. 421, pp. 269292, 2000. 
K. Mahesh, S.K. Lele, and P. Moin, The Influence of Entropy Fluctuations on the Interaction of Turbulence
With a Shock Wave, Journal of Fluid Mechanics, Vol. 334, pp. 353379, 1997. 
K. Mahesh, S. Lee, S.K. Lele, and P. Moin, The Interaction of an Isotropic Field of Acoustic Waves
With a Shock Wave, Journal of Fluid Mechanics, Vol. 300, pp. 383407, 1995. 
